Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol J ; 19(4): e2400026, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38622795

RESUMO

Single-stranded DNA (ssDNA) is the foundation of modern biology, with wide applications in gene editing, sequencing, DNA information storage, and materials science. However, synthesizing ssDNA with high efficiency, high throughput, and low error rate in vitro remains a major challenge. Various methods have been developed for ssDNA synthesis, and some significant results have been achieved. In this review, six main methods were introduced, including solid-phase oligonucleotide synthesis, terminal deoxynucleotidyl transferase-based ssDNA synthesis, reverse transcription, primer exchange reaction, asymmetric polymerase chain reaction, and rolling circle amplification. The advantages and limitations of each method were compared, as well as illustrate their representative achievements and applications. Especially, rolling circle amplification has received significant attention, including ssDNA synthesis, assembly, and application based on recent work. Finally, the future challenges and opportunities of ssDNA synthesis were summarized and discussed. Envisioning the development of new methods and significant progress will be made in the near future with the efforts of scientists around the world.


Assuntos
DNA de Cadeia Simples , DNA , DNA de Cadeia Simples/genética , Reação em Cadeia da Polimerase/métodos , DNA Polimerase Dirigida por DNA , Oligonucleotídeos , Técnicas de Amplificação de Ácido Nucleico/métodos
2.
Chembiochem ; 25(8): e202400054, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38477700

RESUMO

Synthetic biology, a newly and rapidly developing interdisciplinary field, has demonstrated increasing potential for extensive applications in the wide areas of biomedicine, biofuels, and novel materials. DNA assembly is a key enabling technology of synthetic biology and a central point for realizing fully synthetic artificial life. While the assembly of small DNA fragments has been successfully commercialized, the assembly of large DNA fragments remains a challenge due to their high molecular weight and susceptibility to breakage. This article provides an overview of the development and current state of DNA assembly technology, with a focus on recent advancements in the assembly of large DNA fragments in Escherichia coli, Bacillus subtilis, and Saccharomyces cerevisiae. In particular, the methods and challenges associated with the assembly of large DNA fragment in different hosts are highlighted. The advancements in DNA assembly have the potential to facilitate the construction of customized genomes, giving us the ability to modify cellular functions and even create artificial life. It is also contributing to our ability to understand, predict, and manipulate living organisms.


Assuntos
DNA , Genoma , DNA/genética , Saccharomyces cerevisiae/genética , Biologia Sintética
3.
Nano Lett ; 24(11): 3532-3540, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38457281

RESUMO

Developing dynamic nanostructures for in situ regulation of biological processes inside living cells is of great importance in biomedical research. Herein we report the cascaded assembly of Y-shaped branched DNA nanostructure (YDN) during intracellular autophagy. YDN contains one arm with semi-i-motif sequence and Cy3-BHQ2, and another arm with an apurinic/apyrimidinic (AP) site and Cy5-BHQ3. Upon uptake by cancer cells, intermolecular i-motif structures are formed in response to lysosomal H+, causing the formation of YDN-dimer and the recovery of Cy3 fluorescence; when escapes occur from the lysosome to the cytoplasm, the YDN-dimer responds to the overexpressed APE1, leading to the assembly of YDN into the DNA network and the fluorescence recovery of Cy5. Simultaneously, the cascaded assembly activates autophagy, and thus the process of assembly of YDN and autophagy flux can be spatiotemporally coupled. This work illustrates the potential of DNA nanostructures for the in situ regulation of intracellular dynamic events with spatiotemporal control.


Assuntos
Carbocianinas , Nanoestruturas , Neoplasias , DNA/química , Nanoestruturas/química , Reparo do DNA , Autofagia , Neoplasias/genética
4.
Angew Chem Int Ed Engl ; 63(14): e202319073, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38353346

RESUMO

Immunotherapy faces insufficient immune activation and limited immune effectiveness. Herein, we report a smart DNA hydrogel that enables the release of multivalent functional units at the tumor site to enhance the efficacy of immunotherapy. The smart DNA hydrogel was assembled from two types of ultra-long DNA chains synthesized via rolling circle amplification. One DNA chain contained immune adjuvant CpG oligonucleotides and polyaptamers for loading natural killer cell-derived exosomes; the other chain contained multivalent G-quadruplex for loading photodynamic agents. DNA chains formed DNA hydrogel through base-pairing. HhaI restriction endonuclease sites were designed between functional units. Upon stimuli in the tumor sites, the hydrogel was effectively cleaved by the released HhaI and disassembled into functional units. Natural killer cell-derived exosomes played an anti-tumor role, and the CpG oligonucleotide activated antigen-presenting cells to enhance the immunotherapy. Besides the tumor-killing effect of photodynamic therapy, the generated cellular debris acted as an immune antigen to further enhance the immunotherapeutic effect. In a mouse melanoma orthotopic model, the smart DNA hydrogel as a localized therapeutic agent, achieved a remarkable tumor suppression rate of 91.2 %. The smart DNA hydrogel exhibited enhanced efficacy of synergistic immunotherapy and photodynamic therapy, expanding the application of DNA materials in biomedicine.


Assuntos
Melanoma , Fotoquimioterapia , Animais , Camundongos , Melanoma/tratamento farmacológico , Hidrogéis , DNA , Imunoterapia , Modelos Animais de Doenças , Linhagem Celular Tumoral
5.
Small Methods ; : e2301236, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351479

RESUMO

Deoxyribonucleic acid (DNA)-based hydrogels are emerging as promising functional materials for biomedical applications. However, the shelf-time of DNA hydrogels in biological media is severely shortened by nucleases, which limit the application of DNA hydrogels. Herein, a DNA hydrogel with long shelf-time is reported for 3D cell culture. Poly-(L-lysine) (PLL) is introduced as both a cross-linker and a protectant. The electrostatic interaction between PLL and DNA drove the formation of hydrogel. PLL coating on DNA increased the steric hindrance between DNA and nucleases, thus weakening the digestion of nucleases toward phosphodiester bond. As a result, the shelf-time of DNA/PLL hydrogel for 3D cell culture is extended from generally 1 day to longer than 15 days, which has not been achieved previously. Notably, poly-AS1411-aptamers are integrated to DNA/PLL hydrogels for anchoring U87 cells, and the cell encapsulation efficiency of the DNA/PLL hydrogels with aptamer is 4-time higher than that of the hydrogels without aptamer. DNA/PLL hydrogel provided a favorable microenvironment to support the proliferation of cells, which formed cell spheroid in 15 days. This protective coating strategy solves the long-standing problem on the shelf-time of DNA hydrogel, and is envisioned to promote the development of DNA hydrogel in more biomedical applications.

6.
Adv Mater ; 36(15): e2309534, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38199243

RESUMO

Photodynamic therapy (PDT) depends on the light-irradiated exciting of photosensitizer (PS) to generate reactive oxygen species (ROS), which faces challenges and limitations in hypoxia and antioxidant response of cancer cells, and limited tissue-penetration of light. Herein, a multifunctional DNA/upconversion nanoparticles (UCNPs) complex is developed which enables controlled co-delivery of CRISPR-Cas9, hemin, and protoporphyrin (PP) for synergistic PDT. An ultralong single-stranded DNA (ssDNA) is prepared via rolling circle amplification (RCA), which contains recognition sequences of single guide RNA (sgRNA) for loading Cas9 ribonucleoprotein (RNP), G-quadruplex sequences for loading hemin and PP, and linker sequences for combining UCNP. Cas9 RNP cleaves the antioxidant regulator nuclear factor E2-related factor 2 (Nrf2), improving the sensitivity of cancer cells to ROS, and enhancing the synergistic PDT effect. The G-quadruplex/hemin DNAzyme mimicks horseradish peroxidase (HRP) to catalyze the endogenous H2O2 to O2, overcoming hypoxia condition in tumors. The introduced UCNP converts NIR irradiation with deep tissue penetration to light with shorter wavelength, exciting PP to transform the abundant O2 to 1O2. The integration of gene editing and PDT allows substantial accumulation of 1O2 in cancer cells for enhanced cell apoptosis, and this synergistic PDT has shown remarkable therapeutic efficacy in a breast cancer mouse model.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Camundongos , Animais , Sistemas CRISPR-Cas , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes , Hemina , Peróxido de Hidrogênio , RNA Guia de Sistemas CRISPR-Cas , Nanopartículas/uso terapêutico , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Hipóxia , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico
7.
Cell Transplant ; 32: 9636897231213309, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38018498

RESUMO

This study was designed to provide evidence of the neuroprotective of human adipose-derived mesenchymal stem cells (hADSCs) in oxygen-induced retinopathy (OIR). In vivo, hADSCs were intravitreally injected into OIR mice. Various assessments, including HE (histological evaluation), TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) staining, electroretinogram (ERG) analysis, and retinal flat-mount examination, were performed separately at postnatal days 15 (P15) and 17 (P17) to evaluate neurological damage and functional changes. Western blot analysis of ciliary neurotrophic factor (CNTF), glial cell line-derived neurotrophic factor (GDNF), and brain-derived neurotrophic factor (BDNF) was conducted at P17 to elucidate the neuroprotective mechanism. The P17 OIR group exhibited a significant increase in vascular endothelial cell nuclei and neovascularization that breached the ILM (inner limiting membrane) to the P17 control group. In addition, the retinal nonperfusion areas in the P17 OIR group and the number of apoptotic retinal cells in the P15 OIR group were significantly higher than in the corresponding hADSCs treatment group and control group. There was no significant thickness change in the inner nuclear layer (INL) but the outer nuclear layer (ONL) in the P17 OIR treatment group compared with the P17 OIR group. The cell density in the INL and ONL at P17 in the hADSCs treatment group was not significantly different from the OIR group. The amplitude of a-wave and b-wave in scotopic ERG analysis for the P17 OIR group was significantly lower than in the P17 hADSCs treatment group and the P17 control group. Furthermore, the latency of the a-wave and b-wave in the P17 OIR group was significantly longer than in the P17 hADSCs treatment group and the P17 control group. In addition, the expression levels of CNTF and BDNF in the P17 OIR group were statistically higher than those in the P17 control group, whereas the expression of GDNF was statistically lower in the P17 OIR group, compared with the P17 control group. The expression of CNTF and GDNF in the P17 hADSCs treatment group was statistically higher than in the P17 OIR group. However, the expression of BDNF in the P17 hADSCs treatment group was statistically lower than in the P17 OIR group. This study provides evidence for the neuroprotective effects of hADSCs in OIR.


Assuntos
Células-Tronco Mesenquimais , Fármacos Neuroprotetores , Doenças Retinianas , Neovascularização Retiniana , Humanos , Animais , Camundongos , Oxigênio , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fator Neurotrófico Ciliar , Doenças Retinianas/induzido quimicamente , Doenças Retinianas/terapia , Células-Tronco Mesenquimais/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Neovascularização Retiniana/metabolismo
8.
J Am Chem Soc ; 145(43): 23859-23873, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37857277

RESUMO

The precise control of the artificially induced reactions inside living cells is emerging as an effective strategy for the regulation of cell functions. Nevertheless, the manipulation of the assembly of exogenous molecules into artificial architectures in response to intracellular-specific signals remains a grand challenge. Herein, we achieve the precise self-assembly of deoxyribonucleic acid (DNA) network inside cancer cells, specifically responding to telomerase, and realize effective mitochondrial interference and the consequent regulation of cellular behaviors. Two functional DNA modules were designed: a mitochondria-targeting branched DNA and a telomerase-responsive linear DNA. Upon uptake by cancer cells, the telomerase primer in linear DNA responded to telomerase, and a strand displacement reaction was triggered by the reverse transcription of telomerase, thus releasing a linker DNA from the linear DNA. The linker DNA afterward hybridized with the branched DNA to form a DNA network on mitochondria. The DNA network interfered with the function of mitochondria, realizing the apoptosis of cancer cells. This system was further administered in a nude mouse tumor model, showing remarkable suppression of tumor growth. We envision that the telomerase-mediated intracellular self-assembly of the DNA network provides a promising route for cancer therapy.


Assuntos
Neoplasias , Telomerase , Animais , Camundongos , Telomerase/metabolismo , Linhagem Celular Tumoral , Mitocôndrias/metabolismo , Transcrição Reversa , DNA , Neoplasias/genética
9.
Sci Adv ; 9(35): eadi3602, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37647403

RESUMO

CRISPR-Cas9 has been explored as a therapeutic agent for down-regulating target genes; the controlled delivery of Cas9 ribonucleoprotein (RNP) is essential for therapeutic efficacy and remains a challenge. Here, we report cascade dynamic assembly/disassembly of DNA nanoframework (NF) that enables the controlled delivery of Cas9 RNP. NF was prepared with acrylamide-modified DNA that initiated cascade hybridization chain reaction (HCR). Through an HCR, single-guide RNA was incorporated to NF; simultaneously, the internal space of NF was expanded, facilitating the loading of Cas9 protein. NF was designed with hydrophilic acylamino and hydrophobic isopropyl, allowing dynamic swelling and aggregation. The responsive release of Cas9 RNP was realized by introducing disulfide bond-containing N,N-bis(acryloyl)cystamine that was specifically in response to glutathione of cancer cells, triggering the complete disassembly of NF. In vitro and in vivo investigations demonstrated the high gene editing efficiency in cancer cells, the hypotoxicity in normal cells, and notable antitumor efficacy in a breast cancer mouse model.


Assuntos
Sistemas CRISPR-Cas , DNA , Animais , Camundongos , DNA/genética , Acrilamida , Proteína 9 Associada à CRISPR/genética , Cistamina , Ribonucleoproteínas
10.
Proc Natl Acad Sci U S A ; 120(28): e2303822120, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37399419

RESUMO

Exosomes (EXOs) have been proven as biomarkers for disease diagnosis and agents for therapeutics. Great challenge remains in the separation of EXOs with high-purity and low-damage from complex biological media, which is critical for the downstream applications. Herein, we report a DNA-based hydrogel to realize the specific and nondestructive separation of EXOs from complex biological media. The separated EXOs were directly utilized in the detection of human breast cancer in clinical samples, as well as applied in the therapeutics of myocardial infarction in rat models. The materials chemistry basis of this strategy involved the synthesis of ultralong DNA chains via an enzymatic amplification, and the formation of DNA hydrogels through complementary base-pairing. These ultralong DNA chains that contained polyvalent aptamers were able to recognize and bind with the receptors on EXOs, and the specific and efficient binding ensured the selective separation of EXOs from media into the further formed networked DNA hydrogel. Based on this DNA hydrogel, rationally designed optical modules were introduced for the detection of exosomal pathogenic microRNA, which achieved the classification of breast cancer patients versus healthy donors with 100% precision. Furthermore, the DNA hydrogel that contained mesenchymal stem cell-derived EXOs was proved with significant therapeutic efficacy in repairing infarcted myocardium of rat models. We envision that this DNA hydrogel-based bioseparation system is promising as a powerful biotechnology, which will promote the development of extracellular vesicles in nanobiomedicine.


Assuntos
Exossomos , Células-Tronco Mesenquimais , MicroRNAs , Humanos , Ratos , Animais , Exossomos/genética , Exossomos/metabolismo , Hidrogéis/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Células-Tronco Mesenquimais/metabolismo
11.
Adv Mater ; 35(36): e2300823, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37461803

RESUMO

Messenger RNA (mRNA) transfection is the prerequisite for the application of mRNA-based therapeutics. In hard-to-transfect cells, such as macrophages, the effective transfection of mRNA remains a long-standing challenge. Herein, a smart DNA-based nanosystem is reported containing ribosome biogenesis-promoting siRNA, realizing efficient mRNA transfection in macrophages. Four monomers are copolymerized to form a nanoframework (NF), including N-isopropylacrylamide (NIPAM) as the skeleton and acrydite-DNA as the initiator to trigger the cascade assembly of DNA hairpins (H1-polyT and H2-siRNA). By virtue of the phase transition characteristic of polymeric NIPAM, below the lower critical solution temperature (LCST, ≈34 °C), the NF swells to expose polyT sequences to hybridize with the polyA tail of mRNA. Above the LCST, the NF deswells to encapsulate mRNA. The disulfide bond in the NF responds to glutathione, triggering the disassembly of the nanosystem; the siRNA and mRNA are released in response to triphosadenine and RNase H. The siRNA down-regulates the expression of heat shock protein 27, which up-regulates the expression of phosphorylated ribosomal protein S6. The nanosystem shows satisfactory mRNA transfection and translation efficiency in a mouse model. It is envisioned that the DNA-based nanosystem will provide a promising carrier to deliver mRNA in hard-to-transfect cells and promote the development of mRNA-based therapeutics.


Assuntos
DNA , Ribossomos , Animais , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transfecção , DNA/genética , Ribossomos/metabolismo
12.
Angew Chem Int Ed Engl ; 62(32): e202305536, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37278518

RESUMO

The trans-cleavage property of CRISPR-Cas12a system makes it an excellent tool for disease diagnosis. Nevertheless, most methods based on CRISPR-Cas system still require pre-amplification of the target to achieve the desired detection sensitivity. Here we generate Framework-Hotspot reporters (FHRs) with different local densities to investigate their effect on trans-cleavage activity of Cas12a. We find that the cleavage efficiency increases and the cleavage rate accelerates with increasing reporter density. We further construct a modular sensing platform with CRISPR-Cas12a-based target recognition and FHR-based signal transduction. Encouragingly, this modular platform enables sensitive (100 fM) and rapid (<15 min) detection of pathogen nucleic acids without pre-amplification, as well as detection of tumor protein markers in clinical samples. The design provides a facile strategy for enhanced trans cleavage of Cas12a, which accelerates and broadens its applications in biosensing.


Assuntos
Técnicas Biossensoriais , Ácidos Nucleicos , Sistemas CRISPR-Cas/genética , Biomarcadores Tumorais , Transdução de Sinais
13.
Chembiochem ; 24(16): e202300180, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37183575

RESUMO

The clustered regularly interspaced short palindromic repeat (CRISPR)/associated protein 9 (CRISPR/Cas9) system has been widely explored for the precise manipulation of target DNA and has enabled efficient genomic editing in cells. Recently, CRISPR/Cas9 has shown promising potential in biomedical applications, including disease treatment, transcriptional regulation and genome-wide screening. Despite these exciting achievements, efficient and controlled delivery of the CRISPR/Cas9 system has remained a critical obstacle to its further application. Herein, we elaborate on the three delivery forms of the CRISPR/Cas9 system, and discuss the composition, advantages and limitations of these forms. Then we provide a comprehensive overview of the carriers of the system, and focus on the nonviral nanocarriers in chemical methods that facilitate efficient and controlled delivery of the CRISPR/Cas9 system. Finally, we discuss the challenges and prospects of the delivery methods of the CRISPR/Cas9 system in depth, and propose strategies to address the intracellular and extracellular barriers to delivery in clinical applications.


Assuntos
Sistemas CRISPR-Cas , Polímeros , Sistemas CRISPR-Cas/genética , Polímeros/metabolismo , Edição de Genes , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Lipídeos
14.
iScience ; 26(5): 106620, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37250313

RESUMO

Self-assembly processes exist widely in life systems and play essential roles in maintaining life activities. It is promising to explore the molecular fundamentals and mechanisms of life systems through artificially constructing self-assembly systems in living cells. As an excellent self-assembly construction material, deoxyribonucleic acid (DNA) has been widely used to achieve the precise construction of self-assembly systems in living cells. This review focuses on the recent progress of DNA-guided intracellular self-assembly. First, the methods of intracellular DNA self-assembly based on the conformational transition of DNA are summarized, including complementary base pairing, the formation of G-quadruplex/i-motif, and the specific recognition of DNA aptamer. Next, The applications of DNA-guided intracellular self-assembly on the detection of intracellular biomolecules and the regulation of cell behaviors are introduced, and the molecular design of DNA in the self-assembly systems is discussed in detail. Ultimately, the challenges and opportunities of DNA-guided intracellular self-assembly are commented.

15.
Chempluschem ; 88(1): e202200345, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36650721

RESUMO

Micro ribonucleic acids (miRNAs) in exosomes have been proven as reliable biomarkers to detect disease progression. In recent years, deoxyribonucleic acid (DNA)-based nanomaterials show great potential in the field of diagnosis due to the programmable sequence, various molecule recognition and predictable assembly/disassembly of DNA. In this review, we focus on the molecular design and detection mechanism of DNA nanomaterials, and the developed DNA nanomaterial-based optical probes for exosomal miRNA detection are summarized and discussed. The rationally-designed DNA sequences endows these probes with low background signal and high sensitivity in exosomal miRNA detection, and the detection mechanisms based on different DNA nanomaterials are detailly introduced. At the end, the challenges and future opportunities of DNA nanomaterial-based optical probes in exosomal miRNA detection are discussed. We envision that DNA nanomaterial-based optical probes will be promising in precise biomedicine.


Assuntos
Exossomos , MicroRNAs , Nanoestruturas , Exossomos/genética , DNA
16.
Chemistry ; 29(9): e202202673, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36263767

RESUMO

The Review by Yang, Yao and colleagues (DOI: 10.1002/chem.202202673) describes recent developments in biofunctional DNA hydrogels and DNA nanocomplexes based on rolling circle amplification (RCA) and introduces assembly strategies and functionalization methods of the ultralong single-strand DNA produced by RCA to construct biofunctional materials.


Assuntos
DNA de Cadeia Simples , DNA , Técnicas de Amplificação de Ácido Nucleico/métodos
17.
Adv Sci (Weinh) ; 10(4): e2204905, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36461751

RESUMO

The extreme instability of mRNA makes the practical application of mRNA-based vaccines heavily rely on efficient delivery system and cold chain transportation. Herein, a DNA-based nanomachine, which achieves programmed capture, long-term storage without cryopreservation, and efficient delivery of mRNA in cells, is developed. The polythymidine acid (Poly-T) functionalized poly(N-isopropylacrylamide) (DNA-PNIPAM) is synthesized and assembled as the central compartment of the nanomachine. The DNA-PNIPAM nano-assembly exhibits reversible thermal-responsive dynamic property: when lower than the low critical solution temperature (LCST, ≈32 °C) of PNIPAM, the DNA-PNIPAM transforms into extension state to expose the poly-T, facilitating the hybridization with polyadenylic acid (Poly-A) tail of mRNA; when higher than LCST, DNA-PNIPAM re-assembles and achieves an efficient encapsulation of mRNA. It is remarkable that the DNA-PNIPAM nano-assembly realizes long-term storage of mRNA (≈7 days) at 37 °C. Biodegradable 2-hydroxypropyltrimethyl ammonium chloride chitosan is assembled on the outside of DNA-PNIPAM to facilitate the endocytosis of mRNA, RNase-H mediating mRNA release occurs in cytoplasm, and efficient mRNA translation is achieved. This work provides a new disign principle of nanosystem for mRNA delivery.


Assuntos
Temperatura Baixa , DNA , Temperatura
18.
Front Neurosci ; 16: 971952, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36532277

RESUMO

Introduction: Oxygen-induced retinopathy is a type of retinal pathological neovascularization (NV) disease that leads to vision loss and translates to a significant societal cost. Anti-vascular endothelial growth factor (VEGF) and anti-inflammatory treatments have been widely used in the clinic, but the results have not been entirely satisfactory. It is necessary to explore other treatments for Ischemic retinal diseases. Methods: The oxygen-induced retinopathy (OIR) model was induced from P7 to P12 as described. Histology evaluation (HE) and retina flat mounts were checked at P17 to confirm the establishment of the OIR model. Retinal ganglion cell (RGC) degeneration was checked by transmission electron microscopy at P17 to confirm the neurological damage caused by OIR. Western blot analysis was performed at P12, P15, and P17 to study the expression of brain-derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF), and fibroblast growth factor 2 (FGF-2) in normal and OIR mice. Comparative analysis of the expressions of BDNF, CNTF, and FGF-2 in normal and OIR mice was performed. Results: There were many retinal NV and non-perfusion areas in OIR P17. RGCs were degenerated at OIR P17. The expressions of BDNF, CNTF, and FGF-2 gradually increased from P12 to P17 in normal mice and were much higher in OIR mice. The expression curves of BDNF, CNTF, and FGF-2 in the OIR model were inconsistent and did not correlate with each other. Discussion: This study provides evidence for changes in BDNF, CNTF, and FGF-2 in Oxygen-induced retinopathy.

19.
Nat Commun ; 13(1): 7739, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36517520

RESUMO

Intracellular accumulation of reactive oxygen species (ROS) leads to oxidative stress, which is closely associated with many diseases. Introducing artificial organelles to ROS-imbalanced cells is a promising solution, but this route requires nanoscale particles for efficient cell uptake and micro-scale particles for long-term cell retention, which meets a dilemma. Herein, we report a deoxyribonucleic acid (DNA)-ceria nanocomplex-based dynamic assembly system to realize the intracellular in-situ construction of artificial peroxisomes (AP). The DNA-ceria nanocomplex is synthesized from branched DNA with i-motif structure that responds to the acidic lysosomal environment, triggering transformation from the nanoscale into bulk-scale AP. The initial nanoscale of the nanocomplex facilitates cellular uptake, and the bulk-scale of AP supports cellular retention. AP exhibits enzyme-like catalysis activities, serving as ROS eliminator, scavenging ROS by decomposing H2O2 into O2 and H2O. In living cells, AP efficiently regulates intracellular ROS level and resists GSH consumption, preventing cells from redox dyshomeostasis. With the protection of AP, cytoskeleton integrity, mitochondrial membrane potential, calcium concentration and ATPase activity are maintained under oxidative stress, and thus the energy of cell migration is preserved. As a result, AP inhibits cell apoptosis, reducing cell mortality through ROS elimination.


Assuntos
Peróxido de Hidrogênio , Peroxissomos , Espécies Reativas de Oxigênio/metabolismo , Peroxissomos/metabolismo , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo , DNA/metabolismo
20.
Sci Rep ; 12(1): 19635, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36385270

RESUMO

Several Late Viséan-Serpukhovian coral reefs were identified in Langping, Tianlin. They provided an opportunity to investigate paleo-environments suitable for the development of reef-building communities and the construction of coral reefs in Langping. In this paper, part of the reef-building environmental and the ecological characteristics of coral reefs then were elaborated by analyzing the development settings, palaeogeography, sedimentation of reefs, the response to hydrodynamic conditions of reef-building corals, effects of disturbance and non-reef-building organism on reef communities, and the influence of coral morphology on reef development. It is considered that the sedimentary environment of Langping in Late Viséan-Serpukhovian is suitable for the development of benthic communities. The current appearance of reefs is determined by both coral populations ecological characteristics and reef-building environment.


Assuntos
Antozoários , Recifes de Corais , Animais , China , Antozoários/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...